Logo screen

Literature collection

Our literature citations are some examples for the important application of the current porphyrin chemistry. The literature collection not extols the claim of completeness and relevance at erach of the declared applications. With this service we would like to help our customers to find out the exciting field of the porphyrins chemistry:

1. Medical Applications
1.1. Photodynamic therapy (PDT) and diagnostics for malignant and non-oncological diseases
1.1.1. Bonett R., Photosensitizers of the porphyrin and phthalocyanine series for photodynamic therapy., Chemical Society Reviews, , 1995, 19-33
1.1.2. Jori G., Tumor photosensitizers: approaches to enhance the selectivity and efficiecy of photodynamic therapy., J. Photochem. Photobiol. B: Biol., 36, 1996, 87-93
1.1.3. Hombrecher H. K., Schell C., Thiem J., Synthesis and investigation of a galactopyranosyl-cholesteryloxy substituted porphyrin., Bioorg. Med. Chem Lett., 6, 1996, 1199-1202
1.1.4. Sternberg E. D., Dolphin D., Porphyrin- based photosensitizers for use in photodynamic therapy., Tetrahedron, 54, 1998, 4151-4202
1.1.5. Tita, S.P.S and Perussi, J.R., The effect of porphyrins on normal and transformed mouse cell lines in the presence of visible light., Braz. J. Med. Biol. Res., 34, 2001, 1331-1336
1.1.6. Konan Y. N., Cerny R., Favet J., Berton M., Gurny R. and Allémann E., Preparation and characterization of sterile sub-200 nm meso-Tetra(4-hydroxylphenyl)porphyrin-loaded nanoparticles for photodynamic therapy., Eur. J. Pharm. Biopharm. , 55, 2003, 115-124
1.1.7. Konopka K. and Goslinski T., Photodynamic Therapy in Dentistry., J. Dent. Res., 86, 2007, 694-707
1.1.8. To Y.F., Sun R.W., Chen Y., Chan V.S., Yu W.Y., Tam P.K., Che C.M. and Lin C.L., Gold(III) porphyrin complex is more potent than cisplatin in inhibiting growth of nasopharyngeal carcinoma in vitro and in vivo., Int. J. Cancer, 124, 2009, 1971-1979
1.1.9. Young-Hwan Jeong, Hee-Jae Yoon and Woo-Dong Jang, Dendrimer porphyrin-based self-assembled nano-devices for biomedical applications., Polym. J., 44, 2012, 512-521
1.1.10. Matsumoto J., Shiragami T., Hirakawa K. and Yasuda M., Water-Solubilization of P(V) and Sb(V) Porphyrins and Their Photobiological Application., International Journal of Photoenergy, , 2015, 1-12
1.1.11. Huang H., Song W., Rieffel J. and Lovell J. F., Emerging applications of porphyrins in photomedicine., FRPHY, Vol 3, 2015, 1-15
1.1.12. Zhao Chunqiu, Ur Rehman Fawad, Yang Yanlong, Li Xiaoqi, Zhang Dong, Jiang Hui, Selke Matthias, Wang Xuemei and Liu Chongyang, Bio-imaging and Photodynamic Therapy with Tetra Sulphonatophenyl Porphyrin (TSPP)-TiO2 Nanowhiskers: New Approaches in Rheumatoid Arthritis Theranostics, Sci. Rep., 5, 2015, 11518
1.1.13. Rozinek S. C., Thomas R. J. and Brancaleon L., Biophysical characterization of the interaction of human albumin with an anionic porphyrin, Biochem Biophys Rep., 7, 2016, 295–302
1.2. Additional medical applications (antibiotics, antiviral therapy etc.)
1.2.1. Maisch T., Bosl C., Szeimies R.-M., Lehn N. and Abels C., Photodynamic Effects of Novel XF Porphyrin Derivatieves on Prokaryotic and Eukaryotic Cells, Antimicrob. Agents, Chemother., 49, 2005, 1542-1552
1.2.2. Feese E. and Ghiladi R. A., Highly efficient in vitro photodynamic inactivation of Mycobacterium smegmatis., J Antimicrob Chemother., 64, 2009, 782-785
1.2.3. Habib Md. A., Sarker A. K. and Tabata M. , Interaction of DNA with H2TMPyP4+: Probable Lead Compounds for African Sleeping Sickness., Bangladesh Pharmaceutical Journal, 17, 2014, 79-85
1.2.4. Camargo C. R., da Conceição Amaro Martins V., de Guzzi Plepis A. M. and Perussi J. R., Photoinactivation of Gram-Negative Bacteria in Circulating Water using Chitosan Membranes Containing Porphyrin, Biological and Chemical Research, Vol.1, Issue 2, 2014, 67-75
1.2.5. Diddens-Tschoeke H.C., Hüttmann G., Gruber A.D., Pottier R.H. and Hanken H., Localized thermal tumor destruction using dye-enhanced photothermal tumor therapy., Laser Surg. Med., 47, 2015, 452-461
1.2.6. Dastgheyb, S.S., Toorkey, C.B., Shapiro, I.M. and Hickok, N.J., Porphyrin-adsorbed allograft bone: a photoactive, antibiofilm surface., Clin. Orthopaed. Rel. Res., 473, 2015, 2865-2873
2. Fuel cells
2.1. Bogdanoff P., Herrmann I., Hilgendorff M., Dorbandt I., Fiechter S. and Tributsch H., Probing Structural Effects of Pyrolysed CoTMPP-based Electrocatalysts for Oxygen Reduction via New Preparation Strategies., J. New. Mat. Electrochem. Systems, 7, 2004, 85-92
2.2. Bang J. H., Han K., Skrabalak S. E., Kim H., Suslick K. S., Porous Carbon Supports Prepared by Ultrasonic Spray Pyrolysis for Direct Methanol Fuel Cell Electrodes., J. Phys. Chem. C,, 111, 2007, 10959-1096
3. Sensors
3.1. NO-Sensors
3.1.1. Malinski, T.; Taha, Z., Nitric oxide release from a single cell measured in situ by a porphyrinic based microsensor., Nature, 358, 1992, 676-678
3.1.2. Bedioui, F.; Trevin, S.; Albin, V.; Villegas, M.G.G.; Devynck, J., Design and characterization of chemically modified electrodes with iron(III) porphyrinic-based polymers: Study of their reactivity toward nitrites and nitric oxide in aqueous solution., Anal. Chim. Acta, 341, 1997, 177-185
3.1.3. Diab, N.; Schuhmann, W., Electropolymerized manganese porphyrin/polypyrrole films as catalytic surfaces for the oxidation of nitric oxide., Electrochim. Acta, 47, 2001, 265-273
3.1.4. Roales J., Pedrosa J. M., Guillén M. G., Lopes-Costa T., Castillero P., Barranco A. and González-Elipe A. R., Free-Base Carboxyphenyl Porphyrin Films Using a TiO2 Columnar Matrix: Characterization and Application as NO2 Sensors , Sensors, 15, 2015, 11118-11132
3.2. Oxygen Sensors
3.2.1. Sinaasappel M. and Ince C., Calibration of Pd-porphyrin phosphorescence for oxygen concentration measurements in vivo., J. Appl. Physiol., 81, 1996, 2297-2303
3.2.2. Lo L. W., Koch C. J., Wilson D. F., Calibration of Oxygen-Dependent Quenching of the Phosphorescence of Pd-meso-tetra (4-Carboxyphenyl) Porphine: A Phosphor with General Application for Measuring Oxygen Concentration in Biological Systems., Anal. Biochem., Volume 236, Issue 1, 1996, 153-160
3.2.3. Sinaasappel M., Ince C., Calibration of Pd-porphyrin phosphorescence for oxygen concentration measurements in vivo., J. Appl. Physiol., Vol. 81, No. 5, 1996, 2297-2303
3.2.4. Lee S.-K. and Okura I., Optical Sensor for Oxygen Using a Porphyrin-doped Sol-Gel Glass., Analyst, 122, 1997, 81-84
3.2.5. Soumya Mitra S. and Foster T. H., Photochemical Oxygen Consumption Sensitized by a Porphyrin Phosphorescent Probe in Two Model Systems., Biophys. J., 78, 2000, 2597-2605
3.2.6. Mik E. G., van Leeuwen T. G., Raat N. J. and Ince C., Quantitative determination of localized tissue oxygen concentration in vivo by two-photon excitation phosphorescence lifetime measurements., J. Appl. Physiol., 97, 2004, 1962-1969
3.2.7. Stepinac T. K., Chamot S. R., Rungger-Brändle E., Ferrez P., Munoz J.-L., van den Bergh H., Riva C. E., Pournaras C. J. and Wagnieres G. A., Light-Induced Retinal Vascular Damage by Pd-porphyrin Luminescent Oxygen Probes., IOVS, Volume 46, Issue 3, 2005, 956-966
3.2.8. Koren K., Borisov S. and Klimant I., Stable optical oxygen sensing materials based on click-coupling of fluorinated platinum (II) and palladium (II) porphyrins-a convenient way to eliminate dye migration and leaching., Sensors and Actuators B, 169, 2012, 173-181
3.2.9. Huang H., Song W., Chen G., Reynard J. M, Ohulchanskyy T. Y, Prasad P. N, Bright F. V and Lovell J. F, Hydrogels: Pd-Porphyrin-Cross-Linked Implantable Hydrogels with Oxygen-Responsive Phosphorescence., Adv. Healthcare Mater., Volume 3, Issue 6, 2014, 891–896
3.2.10. Önal E., Saß S., Hurpin J., Ertekin K., Topal S. Z., Kumke M. U. and Hirel C., Lifetime-Based Oxygen Sensing Properties of palladium(II) and platinum(II) meso-tetrakis(4-phenylethynyl)phenylporphyrin , J Fluoresc, DOI: 10.1007/s10895-016-2022-x, 2017,
3.3. Artificial Nose
3.3.1. Filippini D., Alimelli A., Di Natale C., Paolesse R., D’Amico A., Lundström I., Chemical sensing with familiar devices., Angewandte Chemie Int. Ed., 45, 2006, 3800-3803
3.3.2. Suslick K. S., Bailey D. P., Ingison C. K., Janzen M., Kosal M. A., McNamara III W. B., Rakow N. A.; Sen A., Weaver J. J., Wilson J. B., Zhang C. and Nakagaki S., Seeing Smells: Development Of An Optoelectronic Nose., Quimica Nova, 30, 2007, 677-681
3.4. Pressure Sensitive Colours (PSP)
3.4.1. Zelelow B., Khalil G.E., Phelan G., Carlson B., Gouterman M., Callis J.B. and Dalton L.R., Dual luminophor pressure sensitive paint II. Lifetime based measurement of pressure and temperature., Sensors and Actuators, 96, 2003, 304–314
3.4.2. Ruyten W., Oxygen Quenching of PtTFPP in FIB Polymer: A Sequential Process?, Chemical Physics Letters, Vol. 394, 2004, 101-104
3.4.3. Grenoble S., Gouterman M., Khalil G., Callis J., Dalton L., Pressure-sensitive paint (PSP): concentration quenching of platinum and magnesium porphyrin dyes in polymeric films., Journal of Luminescence, Volume 113, Issues 1-2, 2005, 33-44
3.5. Ion Selective Electrodes
3.5.1. Gupta V. K. and Agarval S., PVC Based 5,10,15,20-Tetrakis (4-methoxyphenyl) Porphyrinatocobalt (II) Membrane Potentiometric Sensor for Arsenite., Talanta, 65, 2005, 730-734
3.5.2. Vlascici D., Fagadar-Cosma E. and Bizerea-Spiridon O., A New Composition for Co(II)-porphyrin-based Membranes Used in Thiocyanate-selective Electrodes., sensors, 6, 2006, 892-900
3.5.3. LONG LiPing, YOU MingXu, WANG Hao, WANG YongXiang and YANG RongHua, A fluorescent sensing membrane for iodine based on intramolecular excitation energy transfer of anthryl appended porphyrin, Sci China Ser B-Chem , Volume 52, No 6, 2009, 793-801
3.5.4. Mitchell-Koch J. T., Pietrzak M., Malinowska E. and Meyerhoff M. E., Aluminum(III) Porphyrins as Ionophores for Fluoride Selective Polymeric Membrane Electrodes., Electroanalysis, 18, No 6, 2014, 551-557
3.6. Other Applications in Analytical Chemistry
3.6.1. Biesaga M., Pyrzynska K. and Trojanowicz M., Porphyrins in analytical chemistry. A review., Talenta, 51, 2000, 209-224
3.6.2. Hu Q., Yang G, Yin J and Yao Y., Determination of trace lead, cadmium and mercury by on-line column enrichment followed by RP-HPLC as metal-tetra-(4-bromophenyl)-porphyrin chelates., Talenta, Volume 57, Issue 4, 2002, 551-556
3.6.3. Igarashia S., Manakaa A., Terunumaa M. and Kanekia M., Spectrophotometric Determination of Lead(II) Ion by 96-Well Microplate Electrostatically Immobilized Porphyrin., Analytical Letters, Volume 36, Issue 11, 2003, 2393-2399
3.6.4. Latt K. K., Takahashi Y., Fabrication and characterization of a ?,?,?,?-Tetrakis(1-methylpyridinium-4-yl)porphine/silica nanocomposite thin-layer membrane for detection of ppb-level heavy metal ions., Analytica Chimica Acta, 689, 2011, 103-109
3.6.5. Moghimi A., Abdouss M., Ghooshchi G., Preconcentration of Pb(II) by Graphene Oxide with Covalently Linked Porphyrin Adsorbed on Surfactant Coated C18 before Determination by FAAS., Int. J. Bio-Inorg. Hybd. Nanomat., Volume 2, Issue 2, 2013, 355-264
3.6.6. De Souza C., Zrig S., Wang D., Pham M. C. and Piro B., Electrocatalytic miRNA Detection Using Cobalt Porphyrin-Modified Reduced Graphene Oxide., Sensors, 14, 2014, 9984-9994
3.6.7. Creanga I., Palade A., Lascu A, Birdeanu G., Fagadar-Cosma G. and Fagadar-Cosma E., Manganese(III) Porphyrin Sensitiv to H2O2 Detection., Dig. J. Nanomater. Bios., Vol. 10, No. 1, 2015, 315-321
3.6.8. Ahmadi E., Ramazani A., Hamdi Z., Mashhadi-Malekzadeh A. and Mohamadnia Z., 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin Covalently Bound to Nano-silica Surface: Preparation, Characterization and Chemosensor Application to Detect TNT, Silicon, 7, 2015, 323-332
3.6.9. Zamadar M., Orr C. and Uherek M., Water Soluble Cationic Porphyrin Sensor for Detection of Hg2+, Pd2+, Cd2+ and Cu2+, J. Sensors, , 2016,
4. Catalysts
4.1. Catalysts for Epoxidation
4.1.1. Suslick K. S.and Cook B. R., Regioselective Epoxidations of Dienes with Manganese(III) Porphyrin Catalysts, J. Chem. Soc., Chem. Commun., , 1987, 200-202
4.1.2. Li Z. and Xia C. G., Epoxidation of olefins catalyzed by manganese(III) porphyrin in a room temperature ionic liquid., Tetrahedron Letters, Volume 44, Issue 10, 2003, 2069-2071
4.2. Biomimetic Catalysts
4.2.1. Maid H., Böhm P., Huber S. M., Bauer W., Hummel W., Jux N., Gröger H., Iron Catalysis for In Situ Regeneration of Oxidized Cofactors by Activation and Reduction of Molecular Oxygen: A Synthetic Metalloporphyrin as a Biomimetic NAD(P)H-Oxidase., Angew. Chem. Int. Ed., 50, 2011, 2397-2400
4.2.2. Böhm P. and Gröger H., Iron(III)-porphyrin Complex FeTSPP: A Versatile Water-soluble Catalyst for Oxidations in Organic Syntheses, Biorenewables Degradation and Environmental Applications., ChemCatChem, 7, 2015, 22-28
4.3. Other catalysts
4.3.1. Firouzabadi H., Khayat Z., Sardarian A. R., Tangestaninejad S., Metalloporhirins Catalyze regio and chemoselective Silylation of Hydroxy Groups with Hexamethyldisilazane (HMDS), Iran. J. Chem. & Chem. Eng., Vol. 15, No 2, 1996, 54-56
4.3.2. A. Nijamudheen , Deepthi Jose and Ayan Datta, Why Does Gold(III) Porphyrin Act as a Selective Catalyst in the Cycloisomerization of Allenones?, J. Phys. Chem, 115, 2010, 2187-2195
4.3.3. Kaur P., Hupp J. T. and Nguyen S. T., Porous Organic Polymers in Catalysis: Opportunities and Challenges., ACS Catal., 1, 2011, 819–835
4.3.4. Han A., Jia H., Ma H., Ye S., Wu H., Lei H., Han Y., Cao R. and Du P., Cobalt porphyrin electrode films for electrocatalytic water oxidation., Phys. Chem. Chem. Phys., Issue 23, 2014, 11224-11232
5. Water Purification
5.1. Valduga G., Breda G. M., Giacometti G. M., Jori G., and Reddi E., Photosensitation of wild and mutant strains of Escherichia coli by meso-tetra(N-methyl-4-pyridyl)porphine. , Biochemical and Biophysical Research Communication, vol. 256, no 1, 1999, 84-88
5.2. Thandu M., Comuzzi C. and Goi D., Phototreatment of Water by Organic Photosensitizers and Comparison with Inorganic Semiconductors., International Journal of Photoenergy, , 2015, 1-22
5.3. Malara D., Hoj L., Heimann K., Citarrella G. and Oelgemöller M., Capacity of cationic and anionic porphyrins to inactivate the potential aquaculture pathogen Vibrio campbellii, Aquaculture, 473, 2017, 228-236
5.4. La D. D., Hangarge R. V., Bhosale S. V., Ninh H. D., Jones L. A. and Bhosale S. V. , Arginine-Mediated Self-Assembly of Porphyrin on Graphene: A Photocatalyst for Degradation of Dyes, Appl. Sci., 7 , 2017, 643
6. Molecular electronics
6.1. OLED's
6.1.1. Mark E. Thompson et al., Highly Efficient, Near-Infrared Electrophosphorescence from a Pt-Metalloporphyrin Complex, Angewandte Chemie International Edition, 46, 2007, 1109-1112
6.2. Solar Cells
6.2.1. Walter M. G., Wamser C.C., Ruwitch J. Zhao Y., Stevens M., Denman A., Pi R., Rudine A. and Pessiki P. J., Syntheses and optoelectronic properties of amino/carboxyphenylporphyrins for potential use in dye-sensitized TiO2 solar cells., J. Porphyrins Phthalocyanines, 11, 2007, 601-612
6.2.2. Walter M. G., Rudine A. and Wamser C.C, Porphyrins and phthalocyanines in solar photovoltaic cells., J. Porphyrins Phthalocyanines, 14, 2010, 759-792
6.2.3. Suzuki A., Nishimura K. and Oku T., Effects of Germanium Tetrabromide Addition to Zinc Tetraphenyl Porphyrin / Fullerene Bulk Heterojunction Solar Cells., Electronics, 3, 2014, 112-121
6.3. Other Molecular Electronics
6.3.1. Baek E., Pregl S., Shaygan M., Römhildt L., Weber W. M., Mikolajick T., Ryndyk D. A., Baraban L. and Cuniberti G., Optoelectronic switching of nanowire-based hybrid organic/oxide/semiconductor field-effect transistors., Nano Res., Volume 8, Issue 4, 2014, 1229-1240
6.3.2. Day N. U., Walter M. G., and Wamser C. C., Preparations and Electrochemical Characterizations of Conductive Porphyrin Polymers, J. Phys. Chem. C, 119, 2015, 17378-17388